Detection of Maize Crop Phenology Using Planet Fusion

Author:

Senaras Caglar1ORCID,Grady Maddie1,Rana Akhil Singh1ORCID,Nieto Luciana2ORCID,Ciampitti Ignacio3ORCID,Holden Piers1ORCID,Davis Timothy1ORCID,Wania Annett1ORCID

Affiliation:

1. Planet Labs Germany GmbH, 10719 Berlin, Germany

2. Bison Data Labs, Manhattan, KS 66503, USA

3. Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA

Abstract

Accurate identification of crop phenology timing is crucial for agriculture. While remote sensing tracks vegetation changes, linking these to ground-measured crop growth stages remains challenging. Existing methods offer broad overviews but fail to capture detailed phenological changes, which can be partially related to the temporal resolution of the remote sensing datasets used. The availability of higher-frequency observations, obtained by combining sensors and gap-filling, offers the possibility to capture more subtle changes in crop development, some of which can be relevant for management decisions. One such dataset is Planet Fusion, daily analysis-ready data obtained by integrating PlanetScope imagery with public satellite sensor sources such as Sentinel-2 and Landsat. This study introduces a novel method utilizing Dynamic Time Warping applied to Planet Fusion imagery for maize phenology detection, to evaluate its effectiveness across 70 micro-stages. Unlike singular template approaches, this method preserves critical data patterns, enhancing prediction accuracy and mitigating labeling issues. During the experiments, eight commonly employed spectral indices were investigated as inputs. The method achieves high prediction accuracy, with 90% of predictions falling within a 10-day error margin, evaluated based on over 3200 observations from 208 fields. To understand the potential advantage of Planet Fusion, a comparative analysis was performed using Harmonized Landsat Sentinel-2 data. Planet Fusion outperforms Harmonized Landsat Sentinel-2, with significant improvements observed in key phenological stages such as V4, R1, and late R5. Finally, this study showcases the method’s transferability across continents and years, although additional field data are required for further validation.

Funder

Federal Ministry for Economic Affairs and Climate Action of Germany BMWK

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3