Affiliation:
1. Donald Danforth Plant Science Center St. Louis Missouri USA
2. Geospatial Institute Saint Louis University St. Louis Missouri USA
3. Department of Earth and Atmospheric Sciences Saint Louis University St. Louis Missouri USA
Abstract
AbstractOver the last decade, the use of unmanned aerial vehicles (UAVs) for plant phenotyping and field crop monitoring has significantly evolved and expanded. These technologies have been particularly valuable for monitoring crop growth and health and for managing abiotic and biotic stresses such as drought, fertilization deficiencies, disease, and bioaggressors. This paper provides a comprehensive review of the progress in UAV‐based plant phenotyping, with a focus on the current use and application of drone technology to gain information on plant growth, development, adaptation, and yield. We reviewed over 200 research articles and discuss the best tools and methodologies for different research purposes, the challenges that need to be overcome, and the major research gaps that remain. First, the review offers a critical focus on elucidating the distinct characteristics of UAV platforms, highlighting the diverse sensor technologies employed and shedding light on the nuances of UAV data acquisition and processing methodologies. Second, it presents a comprehensive analysis of the multiple applications of UAVs in field phenotyping, underscoring the transformative potential of integrating machine learning techniques for plant analysis. Third, it delves into the realm of machine learning applications for plant phenotyping, emphasizing its role in enhancing data analysis and interpretation. Furthermore, the paper extensively examines the open issues and research challenges within the domain, addressing the complexities and limitations faced during data acquisition, processing, and interpretation. Finally, it outlines the future trends and emerging technologies in the field of UAV‐based plant phenotyping, paving the way for innovative advancements and methodologies.
Funder
U.S. Department of Agriculture
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献