In-Season Crop Type Detection by Combing Sentinel-1A and Sentinel-2 Imagery Based on the CNN Model

Author:

Mao Mingxiang1,Zhao Hongwei2,Tang Gula34,Ren Jianqiang2

Affiliation:

1. Law School, Panzhihua University, Panzhihua 617000, China

2. State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. School of Geographical Sciences, China West Normal University, Nanchong 637009, China

4. Guokechuang (Beijing) Information Technology Co., Ltd., Beijing 100070, China

Abstract

In-season crop-type maps are required for a variety of agricultural monitoring and decision-making applications. The earlier the crop type maps of the current growing season are obtained, the more beneficial it is for agricultural decision-making and management. With the availability of a large amount of high spatiotemporal resolution remote sensing data, different data sources are expected to increase the frequency of data acquisition, which can provide more information in the early season. To explore the potential of integrating different data sources, a Dual-1DCNN algorithm was built based on the CNN model in this study. Moreover, an incremental training method was used to attain the network on each data acquisition date and obtain the best detection date for each crop type in the early season. A case study for Hengshui City in China was conducted using time series of Sentinel-1A (S1A) and Sentinel-2 (S2) attained in 2019. To verify this method, the classical methods support vector machine (SVM), random forest (RF), and Mono-1DCNN were implemented. The input for SVM and RF was S1A and S2 data, and the input for Mono-1DCNN was S2 data. The results demonstrated the following: (1) Dual-1DCNN achieved an overall accuracy above 85% at the earliest time.; (2) all four types of models achieved high accuracy (F1s were greater than 90%) on summer maize after sowing one month later; (3) for cotton and common yam rhizomes, Dual-1DCNN performed best, with its F1 reaching 85% within 2 months after cotton sowing, 15 days, 20 days, and 45 days ahead of Mono-1DCNN, SVM, and RF, respectively, and its extraction of the common yam rhizome was achieved 1–2 months earlier than other methods within the acceptable accuracy. These results confirmed that Dual-1DCNN offered significant potential in the in-season detection of crop types.

Funder

National Key R&D Program of China and Shandong Province

High resolution Earth observation System Project

Fundamental Research Funds for Central Non-profit Scientific Institution

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3