Early Identification of Corn and Soybean Using Crop Growth Curve Matching Method

Author:

Chen Ruiqing1,Sun Liang1ORCID,Chen Zhongxin2,Wuyun Deji1,Sun Zheng1ORCID

Affiliation:

1. State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. Digitization and Informatics Division, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy

Abstract

The prompt and precise identification of corn and soybeans are essential for making informed decisions in agricultural production and ensuring food security. Nonetheless, conventional crop identification practices often occur after the completion of crop growth, lacking the timeliness required for effective agricultural management. To achieve in-season crop identification, a case study focused on corn and soybeans in the U.S. Corn Belt was conducted using a crop growth curve matching methodology. Initially, six vegetation indices datasets were derived from the publicly available HLS product, and then these datasets were integrated with known crop-type maps to extract the growth curves for both crops. Furthermore, crop-type information was acquired by assessing the similarity between time-series data and the respective growth curves. A total of 18 scenarios with varying input image numbers were arranged at approximately 10-day intervals to perform identical similarity recognition. The objective was to identify the scene that achieves an 80% recognition accuracy earliest, thereby establishing the optimal time for early crop identification. The results indicated the following: (1) The six vegetation index datasets demonstrate varying capabilities in identifying corn and soybean. Among those, the EVI index and two red-edge indices exhibit the best performance, all surpassing 90% accuracy when the entire time-series data are used as input. (2) EVI, NDPI, and REVI2 indices can achieve early identification, with an accuracy exceeding 80% around July 20, more than two months prior to the end of the crops’ growth periods. (3) Utilizing the same limited sample size, the early crop identification method based on crop growth curve matching outperforms the method based on random forest by approximately 20 days. These findings highlight the considerable potential and value of the crop growth curve matching method for early identification of corn and soybeans, especially when working with limited samples.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3