YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition

Author:

Wu Tianyong1ORCID,Dong Youkou1

Affiliation:

1. College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China

Abstract

Object detection remains a pivotal aspect of remote sensing image analysis, and recent strides in Earth observation technology coupled with convolutional neural networks (CNNs) have propelled the field forward. Despite advancements, challenges persist, especially in detecting objects across diverse scales and pinpointing small-sized targets. This paper introduces YOLO-SE, a novel YOLOv8-based network that innovatively addresses these challenges. First, the introduction of a lightweight convolution SEConv in lieu of standard convolutions reduces the network’s parameter count, thereby expediting the detection process. To tackle multi-scale object detection, the paper proposes the SEF module, an enhancement based on SEConv. Second, an ingenious Efficient Multi-Scale Attention (EMA) mechanism is integrated into the network, forming the SPPFE module. This addition augments the network’s feature extraction capabilities, adeptly handling challenges in multi-scale object detection. Furthermore, a dedicated prediction head for tiny object detection is incorporated, and the original detection head is replaced by a transformer prediction head. To address adverse gradients stemming from low-quality instances in the target detection training dataset, the paper introduces the Wise-IoU bounding box loss function. YOLO-SE showcases remarkable performance, achieving an average precision at IoU threshold 0.5 (AP50) of 86.5% on the optical remote sensing dataset SIMD. This represents a noteworthy 2.1% improvement over YOLOv8 and YOLO-SE outperforms the state-of-the-art model by 0.91%. In further validation, experiments on the NWPU VHR-10 dataset demonstrated YOLO-SE’s superiority with an accuracy of 94.9%, surpassing that of YOLOv8 by 2.6%. The proposed advancements position YOLO-SE as a compelling solution in the realm of deep learning-based remote sensing image object detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3