Estimating Leaf Nitrogen Content in Wheat Using Multimodal Features Extracted from Canopy Spectra

Author:

Gao Zhiwei,Luo Na,Yang BaohuaORCID,Zhu Yue

Abstract

The leaf nitrogen content (LNC) of wheat is one of key bases for wheat nitrogen fertilizer management and nutritional diagnosis, which is of great significance to the sustainable development of precision agriculture. The canopy spectrum provides an effective way to monitor the nitrogen content of wheat. Previous studies have shown that features extracted from the canopy spectrum, such as vegetation indices (VIs) and band positions (BPs), have successfully achieved the monitoring of crop nitrogen nutrition. However, the features mentioned above are spectral features extracted on the basis of linear or nonlinear combination models with a simple structure, which limits the general applicability of the model. In addition, models based on spectral features are prone to overfitting, which also reduces the accuracy of the model. Therefore, we propose an estimation model based on multimodal features (convolutional features and VIs, BPs) of the canopy spectrum, which aim to improve accuracy in estimating wheat LNC. Among these, the convolutional features (CFs) extracted by the designed convolutional neural network represent the deep semantic information of the canopy reflection spectrum, which can make up for the lack of robustness of the spectral features. The results showed that the accuracy of the model based on the fusion features (VIs + BPs + CFs) was higher than that of the feature of single modality. Moreover, the particle swarm optimization–support vector regression (PSO-SVR) model based on multimodal features had the best prediction effect (R2 = 0.896, RMSE = 0.188 for calibration, R2 = 0.793, RMSE = 0.408 for validation). Therefore, the method proposed in this study could improve performance in the estimation of wheat LNC, which provides technical support for wheat nitrogen nutrition monitoring.

Funder

the Major Science and Technology Projects in Anhui Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3