In Situ Nondestructive Detection of Nitrogen Content in Soybean Leaves Based on Hyperspectral Imaging Technology

Author:

Zhang Yakun1,Guan Mengxin1,Wang Libo2,Cui Xiahua3,Li Tingting1,Zhang Fu1ORCID

Affiliation:

1. College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. College of Food Bioengineering, Henan University of Science and Technology, Luoyang 471023, China

3. College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China

Abstract

In this paper, hyperspectral imaging technology, combined with chemometrics methods, was used to detect the nitrogen content of soybean leaves, and to achieve the rapid, non-destructive and in situ detection of the nitrogen content in soybean leaves. Soybean leaves under different fertilization treatments were used as the research object, and the hyperspectral imaging data and the corresponding nitrogen content data of soybean leaves at different growth stages were obtained. Seven spectral preprocessing methods, such as Savitzky–Golay smoothing (SG), first derivative (1-Der), and direct orthogonal signal correction (DOSC), were used to establish the quantitative prediction models for soybean leaf nitrogen content, and the quantitative prediction models of different spectral preprocessing methods for soybean leaf nitrogen content were analyzed and compared. On this basis, successive projections algorithm (SPA), genetic algorithm (GA) and random frog (RF) were employed to select the characteristic wavelengths and compress the spectral data. The results showed the following: (1) The full-spectrum prediction model of soybean leaf nitrogen content based on DOSC pretreatment was the best. (2) The PLS model of soybean leaf nitrogen content based on the five characteristic wavelengths had the best prediction performance. (3) The spatial distribution map of soybean leaf nitrogen content was generated in a pixel manner using the extracted five characteristic wavelengths and the DOSC-RF-PLS model. The nitrogen content level of soybean leaves can be quantified in a simple way; this provides a foundation for rapid in situ non-destructive detection and the spatial distribution difference detection of soybean leaf nitrogen. (4) The overall results illustrated that hyperspectral imaging technology was a powerful tool for the spatial prediction of the nitrogen content in soybean leaves, which provided a new method for the spatial distribution of the soybean nutrient status and the dynamic monitoring of the growth status.

Funder

Henan Provincial Science and Technology Research Project

2023 Henan Science and Technology Commissioner Project, Collaborative Education Project of Ministry of Education

National Natural Science Foundation of China

Publisher

MDPI AG

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3