Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model

Author:

Yang BaohuaORCID,Zhu Yue,Zhou Shuaijun

Abstract

The extraction of wheat lodging is of great significance to post-disaster agricultural production management, disaster assessment and insurance subsidies. At present, the recognition of lodging wheat in the actual complex field environment still has low accuracy and poor real-time performance. To overcome this gap, first, four-channel fusion images, including RGB and DSM (digital surface model), as well as RGB and ExG (excess green), were constructed based on the RGB image acquired from unmanned aerial vehicle (UAV). Second, a Mobile U-Net model that combined a lightweight neural network with a depthwise separable convolution and U-Net model was proposed. Finally, three data sets (RGB, RGB + DSM and RGB + ExG) were used to train, verify, test and evaluate the proposed model. The results of the experiment showed that the overall accuracy of lodging recognition based on RGB + DSM reached 88.99%, which is 11.8% higher than that of original RGB and 6.2% higher than that of RGB + ExG. In addition, our proposed model was superior to typical deep learning frameworks in terms of model parameters, processing speed and segmentation accuracy. The optimized Mobile U-Net model reached 9.49 million parameters, which was 27.3% and 33.3% faster than the FCN and U-Net models, respectively. Furthermore, for RGB + DSM wheat lodging extraction, the overall accuracy of Mobile U-Net was improved by 24.3% and 15.3% compared with FCN and U-Net, respectively. Therefore, the Mobile U-Net model using RGB + DSM could extract wheat lodging with higher accuracy, fewer parameters and stronger robustness.

Funder

the Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3