Estimating Farm Wheat Yields from NDVI and Meteorological Data

Author:

Vannoppen AstridORCID,Gobin AnneORCID

Abstract

Information on crop yield at scales ranging from the field to the global level is imperative for farmers and decision makers. The current data sources to monitor crop yield, such as regional agriculture statistics, are often lacking in spatial and temporal resolution. Remotely sensed vegetation indices (VIs) such as NDVI are able to assess crop yield using empirical modelling strategies. Empirical NDVI-based crop yield models were evaluated by comparing the model performance with similar models used in different regions. The integral NDVI and the peak NDVI were weak predictors of winter wheat yield in northern Belgium. Winter wheat (Triticum aestivum) yield variability was better predicted by monthly precipitation during tillering and anthesis than by NDVI-derived yield proxies in the period from 2016 to 2018 (R2 = 0.66). The NDVI series were not sensitive enough to yield affecting weather conditions during important phenological stages such as tillering and anthesis and were weak predictors in empirical crop yield models. In conclusion, winter wheat yield modelling using NDVI-derived yield proxies as predictor variables is dependent on the environment.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3