Wheat Yield Estimation from NDVI and Regional Climate Models in Latvia

Author:

Vannoppen AstridORCID,Gobin AnneORCID,Kotova Lola,Top Sara,De Cruz LesleyORCID,Vīksna Andris,Aniskevich Svetlana,Bobylev Leonid,Buntemeyer LarsORCID,Caluwaerts Steven,De Troch Rozemien,Gnatiuk Natalia,Hamdi RafiqORCID,Reca Remedio ArmelleORCID,Sakalli Abdulla,Van De Vyver Hans,Van Schaeybroeck BertORCID,Termonia Piet

Abstract

Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution and could give more insight into crop yield. In this paper, we (i) evaluate the possibility to use Normalized Difference Vegetation Index (NDVI) time series to estimate wheat yield in Latvia and (ii) determine which weather variables impact wheat yield changes using both ALARO-0 and REMO Regional Climate Models (RCM) output. The integral from NDVI series (aNDVI) for winter and spring wheat fields is used as a predictor to model regional wheat yield from 2014 to 2018. A correlation analysis between weather variables, wheat yield and aNDVI was used to elucidate which weather variables impact wheat yield changes in Latvia. Our results indicate that high temperatures in June for spring wheat and in July for winter wheat had a negative correlation with yield. A linear regression yield model explained 71% of the variability with a residual standard error of 0.55 Mg/ha. When RCM data were added as predictor variables to the wheat yield empirical model a random forest approach resulted in better results compared to a linear regression approach, the explained variance increased up to 97% and the residual standard error decreased to 0.17 Mg/ha. We conclude that NDVI time series and RCM output enabled regional crop yield and weather impact monitoring at higher spatio-temporal resolutions than regional statistics.

Funder

Fonds Wetenschappelijk Onderzoek

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3