Characterization of Source–Sink Traits and Carbon Translocation in Maize Hybrids under High Plant Density

Author:

Ren Hong,Qi Hua,Zhao Ming,Zhou Wenbin,Wang Xinbing,Gong XiangweiORCID,Jiang YingORCID,Li Congfeng

Abstract

Both compact planting and selecting superior maize (Zea mays L.) hybrids can greatly optimize the source–sink relationship and enhance maize productivity. However, the underlying physiological mechanism for regulating carbon (C) assimilate transport and influencing grain yield between maize cultivars has remained unclear under contrasting plant densities. A two-year field experiment was conducted to investigate grain yield, vascular bundle character, grain filling, C allocation in grains and other tissues, and hormone level and enzyme activity in grains under 60,000 (ND) and 90,000 plants ha−1 (HD) densities using Xianyu 335 (XY335) and Zhengdan958 (ZD958) hybrids. Compared to the ZD958, XY335 increased grain yield, kernel number per plant (KNP), and sink capacity by 11.4%, 15.7%, and 7.4%, respectively. Moreover, XY335 performed higher net photosynthetic rate and sucrose synthase activities in grains than those in ZD958, and higher levels of sucrose phosphate synthase and soluble acid invertase activity were mainly exhibited in the middle of the grain filling stage, which contributed to increasing the proportion of grain in total dry matter, grain C content and leaf C transport efficiency by 4.3%, 12.2%, and 52.9%, respectively, under HD conditions. Additionally, a greater area and number of small vascular bundle in ear of XY335 resulted in 21.3% higher matter transport efficiency and 4.8% higher maximum grain filling rate than ZD958 under HD conditions. In addition, grains of XY335 exhibited generally higher levels of indole acetic acid (IAA) and abscisic acid (ABA), as well as ABA/GA3 ratio after maize pollination relative to those from ZD958, conducive to regulating C translocation from leaves to grains. Overall, our study illustrates that stronger source activity, sink characteristics, and matter transport channels for maize hybrids are significant for C assimilate transport to grain for achieving high grain yield under higher plant density.

Funder

the National Natural Science Foundation of China; China Agriculture Research System of MOF and MARA; the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3