UNDERSTANDING PLANT DENSITY EFFECTS ON MAIZE GROWTH AND DEVELOPMENT: AN IMPORTANT ISSUE TO MAXIMIZE GRAIN YIELD

Author:

Sangoi Luís1

Affiliation:

1. Universidade do Estado de Santa Catarina, Brazil

Abstract

Maize is the agronomic grass species that is most sensitive to variations in plant density. For each production system, there is a population that maximizes grain yield. This article presents an overview of the factors that affect optimum plant population, emphasizingthe effects of dense stands on ear development and discussing important changes in plant traits that have contributed to increase the tolerance of modern hybrids to high plant densities. Population for maize maximum economic grain yield varies from 30,000 to over 90,000pl.ha-1, depending on water availability, soil fertility, maturity rating, planting date and row spacing. When the number of individuals per area is increased beyond the optimum plant density, there is a series of consequences that are detrimental to ear ontogeny and result in barrenness. First, ear differentiation is delayed in relation to tassel differentiation. Later-initiated earshoots have a reduced growth rate, resulting in fewer spikelet primordia transformed into functional florets by the time of flowering. Functional florets extrude silks slowly, decreasing the number of fertilized spikelets due to the lack of synchrony between anthesis and silking. Limitations in carbon and nitrogen supply to the ear stimulate young kernel abortion immediately after fertilization. Availability of earlier hybrids, with shorter plant height, lower leaf number, upright leaves, smaller tassels and better synchrony between male and female flowering time has enhanced the ability of maize to face high plant populations without showing excessive barrenness. Improved endurance in high stands has allowed maize to intercept and use solar radiation more efficiently, contributing to the remarkable increase in grain yield potential experienced by this crop.

Publisher

FapUNIFESP (SciELO)

Subject

General Veterinary,Agronomy and Crop Science,Animal Science and Zoology

Reference50 articles.

1. Modern corn production;ALDRICH S.R.,1986

2. Modificação do afilhamento de trigo e aveia pela qualidade da luz;ALMEIDA M.L., de,1998

3. Aumento da densidade de plantas de milho para regiões de curta estação estival de crescimento;ALMEIDA M.L., de;Pesquisa Agropecuária Gaúcha,1996

4. Incremento na densidade de plantas: uma alternativa para aumentar o rendimento de grãos de milho em regiões de curta estação estival de crescimento;ALMEIDA M.L., de;Ciência Rural,2000

5. Crop management;ANDERSON I.C.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3