Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR)

Author:

Li Jun12,Xue Zhengyue13ORCID,Li Yue12,Bo Guangyu2,Shen Fengjiao3,Gao Xiaoming12,Zhang Jian45ORCID,Tan Tu2

Affiliation:

1. School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230031, China

2. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China

3. School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China

4. Faculty of Agronomy, Jilin Agricultural University, Changchun 130108, China

5. Department of Biology, University of Columbia Okanagan, Kelowna, BC V1V 1V7, Canada

Abstract

High-precision observations provide an efficient way to calculate greenhouse gas emissions from agricultural fields and their spatial and temporal distributions. Two high-resolution laser heterodyne radiometers (LHRs) were deployed in the suburb of Hefei (31.9°N 117.16°E) for the remote sensing of atmospheric CO2, CH4 and N2O above rice paddy fields. The atmospheric transmittance spectra of CO2, CH4 and N2O were measured simultaneously in real time, and the atmospheric total column abundance was retrieved from the measured data based on the optimal estimation algorithm, with errors of 0.7 ppm, 4 ppb and 2 ppb, respectively. From July to October, the abundance of CO2 in the atmospheric column that was influenced by emissions from rice fields increased by 0.7 ppm CH4 by 30 ppb, and by 4 ppb N2O. During the rice growth season, rice paddy fields play a role in carbon sequestration. CH4 and N2O emissions from paddy fields are negatively correlated. The method of baking rice paddy fields reduces CH4 emissions from rice fields, but N2O emissions from rice fields are usually subsequently increased. The measurement results showed that LHRs are highly accurate in monitoring atmospheric concentrations and have promising applications in monitoring emissions from rice paddy fields. In the observation period, rice paddy fields can sequester carbon, and CH4 and N2O emissions from rice fields are negatively correlated. The LHRs have strong application prospects for monitoring emissions from agricultural fields.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

University Natural Science Research Program of Anhui Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3