How Do Variable Fertilizer and Irrigation Treatments Impact Greenhouse Gas Fluxes from an Aridland Agroecosystem?

Author:

Duval BenjaminORCID,Martin Jamie,Marsalis Mark A.

Abstract

Greenhouse gas (GHG) emissions from agriculture are significant contributors to global change. We experimentally manipulated biogeochemical control points of irrigation and nitrogen (N) to examine management strategies that could impact GHG flux, i.e., carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and soil physiochemical changes over a growing season in an arid New Mexico sorghum (Sorghum bicolor (L.) Moench) cropping system. Sorghum is water and N efficient and amenable to environmental stress. Interrogating how crop systems perform in intense heat, aridity and ultraviolet stress of the southwestern US climate can inform future management in areas that produce more food currently, but that will undergo these stresses in the near future. Water was applied at regionally typical rates, or at ~30% below those rates. Timing N to plant needs may reduce N loss and N2O emissions, and we tested this hypothesis by adding equal amounts of fertilizer to all plots, with half receiving all fertilizer at planting versus plots fertilized at 50:50 planting and 30 days post-planting. Gas flux from soil was analyzed via FTIR. More biomass was harvested from the fully irrigated plots; N timing did not significantly affect biomass. Soil pH fluctuated throughout the season in response to both treatments. Carbon dioxide emissions significantly increased in fully irrigated plots through time. Methane uptake was depressed by full irrigation. Nitrous oxide flux was lower in split N plots, but N2O emissions were not impacted by reduced irrigation. These results suggest that arid adapted crops can maintain economically feasible yield, and biogeochemical monitoring within a growing season can help manage for GHG flux.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3