Design of a Portable Analyzer to Determine the Net Exchange of CO2 in Rice Field Ecosystems

Author:

Bonilla-Cordova Mirko1ORCID,Cruz-Villacorta Lena2,Echegaray-Cabrera Ida1,Ramos-Fernández Lia3ORCID,Flores del Pino Lisveth4

Affiliation:

1. Department of Environmental Engineering, Universidad Nacional Agraria La Molina, Lima 15024, Peru

2. Department of Territorial Planning and Doctoral Program of Engineering and Environmental Sciences, Universidad Nacional Agraria La Molina, Lima 15024, Peru

3. Department of Water Resources, Universidad Nacional Agraria La Molina, Lima 15024, Peru

4. Research Center for Environmental Chemistry, Toxicology and Biotechnology, Universidad Nacional Agraria La Molina, Lima 15024, Peru

Abstract

Global warming is influenced by an increase in greenhouse gas (GHG) concentration in the atmosphere. Consequently, Net Ecosystem Exchange (NEE) is the main factor that influences the exchange of carbon (C) between the atmosphere and the soil. As a result, agricultural ecosystems are a potential carbon dioxide (CO2) sink, particularly rice paddies (Oryza sativa). Therefore, a static chamber with a portable CO2 analyzer was designed and implemented for three rice plots to monitor CO2 emissions. Furthermore, a weather station was installed to record meteorological variables. The vegetative, reproductive, and maturation phases of the crop lasted 95, 35, and 42 days post-sowing (DPS), respectively. In total, the crop lasted 172 DPS. Diurnal NEE had the highest CO2 absorption capacity at 10:00 a.m. for the tillering stage (82 and 89 DPS), floral primordium (102 DPS), panicle initiation (111 DPS), and flowering (126 DPS). On the other hand, the maximum CO2 emission at 82, 111, and 126 DPS occurred at 6:00 p.m. At 89 and 102 DPS, it occurred at 4:00 and 6:00 a.m., respectively. NEE in the vegetative stage was −25 μmolCO2 m2 s−1, and in the reproductive stage, it was −35 μmolCO2 m2 s−1, indicating the highest absorption capacity of the plots. The seasonal dynamics of NEE were mainly controlled by the air temperature inside the chamber (Tc) (R = −0.69), the relative humidity inside the chamber (RHc) (R = −0.66), and net radiation (Rn) (R = −0.75). These results are similar to previous studies obtained via chromatographic analysis and eddy covariance (EC), which suggests that the portable analyzer could be an alternative for CO2 monitoring.

Funder

National Scientific Research and Advanced Studies Program (PROCIENCIA) of PROCIENCIA-Peru

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3