Crop Modeling Application to Improve Irrigation Efficiency in Year-Round Vegetable Production in the Texas Winter Garden Region

Author:

Kim Sumin,Meki Manyowa N.,Kim SojungORCID,Kiniry James R.

Abstract

Given a rising demand for quality assurance, rather than solely yield, supplemental irrigation plays an important role to ensure the viability and profitability of vegetable crops from unpredictable changes in weather. However, under drought conditions, agricultural irrigation is often given low priority for water allocation. This reduced water availability for agriculture calls for techniques with greater irrigation efficiency, that do not compromise crop quality and yield, and that provide economic benefit for producers. This study developed vegetable growing models for eight different vegetable crops (bush bean, green bean, cabbage, peppermint, spearmint, yellow straight neck squash, zucchini, and bell pepper) based on data from several years of field research. The ALMANAC model accurately simulated yields and water use efficiency (WUE) of all eight vegetables. The developed vegetable models were used to evaluate the effects of various irrigation regimes on vegetable growth and production in several locations in the Winter Garden Region of Texas, under variable weather conditions. Based on our simulation results from 960 scenarios, optimal irrigation amounts that produce high yield as well as reasonable economic profit to producers were determined for each vegetable crop. Overall, yields for all vegetables increased as irrigation amounts increased. However, irrigation amounts did not have a sustainable impact on vegetable yield at high irrigation treatments, and the WUEs of most vegetables were not significantly different among various irrigation regimes. When vegetable yields were compared with water cost, the rate decreased as irrigation amounts increased. Thus, producers will not receive economic benefits when vegetable irrigation water demand is too high.

Funder

Oak Ridge Institute for Science and Education

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference13 articles.

1. Winter Garden Region;Odintz,2019

2. Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency;Irmak;Biol. Syst. Eng. Pap. Publ.,2011

3. Applications of Models with Different Spatial Scales;Kiniry,2002

4. History of model development at Temple, Texas

5. Simulated Biomass, Climate Change Impacts, and Nitrogen Management to Achieve Switchgrass Biofuel Production at Diverse Sites in U.S.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3