Preharvest Reduction in Nutrient Solution Supply of Pepper (Capsicum annuum L.) Contributes to Improve Fruit Quality and Fertilizer Efficiency While Stabilising Yields

Author:

Wang Junzheng,Gao Zixing,Sun Tao,Huang Wenxian,Jia Yuanjie,Li Xiaojing,Zhang Zhi,Hu Xiaohui

Abstract

Optimising fertilisation is an important part of maximising vegetable yield and quality whilst minimising environmental hazards. An accurate and efficient scheme of irrigation and fertiliser based on plants’ nutrient requirements at different growth stages is essential for the effective intensive production of greenhouse pepper (Capsicum annuum L.). In this study, the effects of reducing fertilisation rate by 20%, 40%, 60% and 80% from the day 6 to day 0 before harvest for each layer of peppers on growth, yield, quality and nutrient utilisation were evaluated. The results showed that the morphological indicators (plant height and stem diameter) and biomass of plants decreased gradually with the increase in fertiliser reduction rate. Compared with control (CK) plants, the 20–40% reduction in fertiliser application rate did not cause a significant decrease in biomass and stem diameter but significantly increased the accumulation of N (13.52–15.73%), P (23.09% in 20% reducted-treatment) and K (13.22–14.21%) elements in plants. The 20–80% reduction in fertiliser application before harvest had no significant effects on the nutrient agronomic efficiency of N, P and K elements. However, it decreased the physiological nutrient efficiency and significantly improved the nutrient harvest index of N, P and K. Appropriate reduction in fertiliser application significantly increased the nutrient recovery efficiency (20–40% reduction) and nutrient partial-factor productivity (40% reduction) of N (3.35–6.00% and 12.87%), P (2.47–2.92% and 14.01%) and K (7.49–15.68% and 14.01%), respectively. Furthermore, reducing the fertilisation rate by 20–40% before each harvest had a certain positive effect on the C and N metabolism of pepper leaves and fruits. In particular, the activities of N metabolism-related enzymes (nitrate reductase, nitrite reductase, glutamine synthase, glutamate synthase and glutamate dehydrogenase) and C metabolism-related enzymes (sucrose phosphate synthase, sucrose synthetase, acid invertase and neutral invertase) in leaves and fruits did not significantly different or significantly increased compared with those in CK plants. The results of the representative aromatic substance contents in the fruit screened by the random forest model showed that compared with the CK plants, reducing the fertiliser application by 20–40% before harvest significantly increased the content of capsaicin and main flavour substances in the fruit on the basis of stable yield. In summary, in the process of pepper substrate cultivation, reducing the application of nutrients by 40% from the day 6 to day 0 before each harvest could result in stable yield and quality improvement of the pepper. These results have important implications for institutional precision fertilisation programs and the improvement of the agroecological environment.

Funder

The Key Research and Development Program of Shaanxi Province in China

China Agriculture Research System

The Integration and Promotion of Agricultural Science and Technology Innovation in Shaanxi Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3