Abstract
The crop water stress index (CWSI) is a widely used analytical tool based on portable thermography. This method can be useful in replacing the traditional stem water potential method obtained with a Scholander chamber (PMS Model 600) because the latter is not feasible for large-scale studies due to the time involved and the fact that it is invasive and can cause damage to the plant. The present work had three objectives: (i) to understand if CWSI estimated using an aerial sensor can estimate the water status of the plant; (ii) to compare CWSI from aerial-thermographic and portable thermal cameras with stem water potential; (iii) to estimate the capacity of an unmanned aerial vehicle (UAV) to calculate and spatialize CWSI. Monitoring of CWSI (CWSIP) using a portable device was performed directly in the canopy, by measuring reference temperatures (Tdry, Twet, and canopy temperature (Tc)). Aerial CWSI calculation was performed using two models: (i) a simplified CWSI model (CWSIS), where the Tdry and Twet were estimated as the average of 1% of the extreme temperature, and (ii) an air temperature model (CWSITair) where air temperatures (Tair + 7 °C) were recorded as Tdry and in the Twet, considering the average of the lowest 33% of histogram values. In these two models, the Tc value corresponded to the temperature value in each pixel of the aerial thermal image. The results show that it was possible to estimate CWSI by calculating canopy temperatures and spatializing CWSI using aerial thermography. Of the two models, it was found that for CWSITair, CWSIS (R2 = 0.55) evaluated crop water stress better than stem water potential. The CWSIS had good correlation compared with the portable sensor (R2 = 0.58), and its application in field measurements is possible.
Funder
European Regional Development Fund (ERDF), Northern Regional Operational Program 2020 under the Technology, Environment, Creativity and Health Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference65 articles.
1. The Impact of Climate Change on Viticulture and Wine Quality
2. IPCC Climate Change 2021 Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers
3. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I;Jan van Oldenborgh,2013
4. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain
5. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献