Machine Learning-Based Spectral Library for Crop Classification and Status Monitoring

Author:

Zhang ,He ,Yuan ,Liu ,Zhou ,Huang

Abstract

The establishment and application of a spectral library is a critical step in the standardization and automation of remote sensing interpretation and mapping. Currently, most spectral libraries are designed to support the classification of land cover types, whereas few are dedicated to agricultural remote sensing monitoring. Here, we gathered spectral observation data on plants in multiple experimental scenarios into a spectral database to investigate methods for crop classification (16 crop species) and status monitoring (tea plant and rice growth). We proposed a set of screening methods for spectral features related to plant classification and status monitoring (band reflectance, vegetation index, spectral differentiation, spectral continuum characteristics) that are based on ISODATA and JM distance. Next, we investigated the performance of different machine learning classifiers in the spectral library application, including K-nearest neighbor (KNN), Random Forest (RF), and a genetic algorithm coupled with a support vector machine (GA-SVM). The optimal combination of spectral features and the classifier with the highest classification accuracy were selected for crop classification and status monitoring scenarios. The GA-SVM classifier performed the best, which produced an accuracy of OAA = 0.94, Kappa = 0.93 for crop classification in a complex scenario (crops mixed with 71 non-crop plant species), and promising accuracies for tea plant growth monitoring (OAA = 0.98, Kappa = 0.97) and rice growth stage monitoring (OAA = 0.92, Kappa = 0.90). Therefore, the establishment of a plant spectral library combined with relevant feature extraction and a classification algorithm effectively supports agricultural monitoring by remote sensing.

Funder

National Natural Science Foundation of China

Zhejiang public welfare programme of agriculture technology

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3