Abstract
Currently, climate change is affecting considerably the availability of freshwater for agriculture, increasing the need for the optimization of crop water use efficiency. Attempts to use VPD (vapor pressure deficit) modulation to reduce water consumption have been made. However, the effects of VPD on leaf stomatal and hydraulic traits, and on possible tradeoffs between photosynthetic carbon gain and transpiration, are rarely reported. We analyzed photosynthesis (gas-exchange, photochemistry) stomatal and hydraulic-related traits of green (G) and red (R) butterhead lettuce (Lactuca sativa L.) grown under low and high VPD (LV, HV) in a controlled environment. Our results showed that plants developed a higher number of small stomata under LV, allowing better regulation over opening/closing mechanisms and thus increasing net photosynthesis by 18%. LV plants also achieved better performance of the photosystem II and a more efficient water use (increments in ΦPSII and iWUE by 3% and 49%), resulting in enhanced plant growth and reduced need for irrigation. Significant differences between G and R plants were limited to a few traits, and the physiological response under the two VPDs did not show cultivar-specific response. We discuss the role of VPD management as necessary to maximize crop water use by harmonizing photosynthesis and transpiration.
Subject
Agronomy and Crop Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献