Litchi Detection in a Complex Natural Environment Using the YOLOv5-Litchi Model

Author:

Xie Jiaxing,Peng Jiajun,Wang Jiaxin,Chen Binhan,Jing Tingwei,Sun Daozong,Gao Peng,Wang Weixing,Lu Jianqiang,Yetan Rundong,Li JunORCID

Abstract

Detecting litchis in a complex natural environment is important for yield estimation and provides reliable support to litchi-picking robots. This paper proposes an improved litchi detection model named YOLOv5-litchi for litchi detection in complex natural environments. First, we add a convolutional block attention module to each C3 module in the backbone of the network to enhance the ability of the network to extract important feature information. Second, we add a small-object detection layer to enable the model to locate smaller targets and enhance the detection performance of small targets. Third, the Mosaic-9 data augmentation in the network increases the diversity of datasets. Then, we accelerate the regression convergence process of the prediction box by replacing the target detection regression loss function with CIoU. Finally, we add weighted-boxes fusion to bring the prediction boxes closer to the target and reduce the missed detection. An experiment is carried out to verify the effectiveness of the improvement. The results of the study show that the mAP and recall of the YOLOv5-litchi model were improved by 12.9% and 15%, respectively, in comparison with those of the unimproved YOLOv5 network. The inference speed of the YOLOv5-litchi model to detect each picture is 25 ms, which is much better than that of Faster-RCNN and YOLOv4. Compared with the unimproved YOLOv5 network, the mAP of the YOLOv5-litchi model increased by 17.4% in the large visual scenes. The performance of the YOLOv5-litchi model for litchi detection is the best in five models. Therefore, YOLOv5-litchi achieved a good balance between speed, model size, and accuracy, which can meet the needs of litchi detection in agriculture and provides technical support for the yield estimation and litchi-picking robots.

Funder

Independent Research and Development Projects of Maoming Laboratory

Co-constructing Cooperative Project on Agricultural Sci-tech of New Rural Development Research Institute of South China Agricultural University

China Agriculture Research System of MOF and MARA

Guangdong Province Rural Revitalization Strategy Projects

Laboratory of Lingnan Modern Agriculture Project

Guangdong Science and Technology Innovation Cultivation Special Fund Project for College Students

National College Students’ innovation and entrepreneurship training program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3