Method for Identifying Litchi Picking Position Based on YOLOv5 and PSPNet

Author:

Qi Xiaokang,Dong Jingshi,Lan Yubin,Zhu HangORCID

Abstract

China has the largest output of litchi in the world. However, at present, litchi is mainly picked manually, fruit farmers have high labor intensity and low efficiency. This means the intelligent unmanned picking system has broad prospects. The precise location of the main stem picking point of litchi is very important for the path planning of an unmanned system. Some researchers have identified the fruit and branches of litchi; however, there is relatively little research on the location of the main stem picking point of litchi. So, this paper presents a new open-access workflow for detecting accurate picking locations on the main stems and presents data used in the case study. At the same time, this paper also compares several different network architectures for main stem detection and segmentation and selects YOLOv5 and PSPNet as the most promising models for main stem detection and segmentation tasks, respectively. The workflow combines deep learning and traditional image processing algorithms to calculate the accurate location information of litchi main stem picking points in the litchi image. This workflow takes YOLOv5 as the target detection model to detect the litchi main stem in the litchi image, then extracts the detected region of interest (ROI) of the litchi main stem, uses PSPNet semantic segmentation model to semantically segment the ROI image of the main stem, carries out image post-processing operation on the ROI image of the main stem after semantic segmentation, and obtains the pixel coordinates of picking points in the ROI image of the main stem. After coordinate conversion, the pixel coordinates of the main stem picking points of the original litchi image are obtained, and the picking points are drawn on the litchi image. At present, the workflow can obtain the accurate position information of the main stem picking point in the litchi image. The recall and precision of this method were 76.29% and 92.50%, respectively, which lays a foundation for the subsequent work of obtaining the three-dimensional coordinates of the main stem picking point according to the image depth information, even though we have not done this work in this paper.

Funder

Top Talents Program for One Case One Discussion of Shandong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. 2018 China litchi Summit;Huang;World Trop. Agric. Inf.,2018

2. Research status and development trend of litchi picking machinery;Zhu;For. Mach. Woodwork. Equip.,2021

3. Virtual Model of Grip-and-Cut Picking for Simulation of Vibration and Falling of Grape Clusters

4. <i>Recognition of cutting region for pomelo picking robot based on machine vision</i>

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3