Author:
Tu Shuqin,Huang Yufei,Liang Yun,Liu Hongxing,Cai Yifan,Lei Hua
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
National College Students Innovation and Entrepreneurship Training Program
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Ariza-Sentís, M., Baja, H., Vélez, S., & Valente, J. (2023). Object detection and tracking on UAV RGB videos for early extraction of grape phenotypic traits. Computers and Electronics in Agriculture, 211, 108051. https://doi.org/10.1016/j.compag.2023.108051
2. Assunção, E. T., Gaspar, P. D., Mesquita, R. J. M., Simões, M. P., Ramos, A., Proença, H., & Inacio, P. R. M. (2022). Peaches detection using a deep learning technique—a contribution to yield estimation, resources management, and circular economy. Climate, 10(2), 11. https://doi.org/10.3390/cli10020011
3. Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. 2016 IEEE international conference on image processing (ICIP) (pp. 3464–3468). IEEE.
4. Bezerra, A. D. M., Pacheco Filho, A. J. S., Bomfim, I. G. A., Smagghe, G., & Freitas, B. M. (2019). Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agricultural Systems, 169, 49–57. https://doi.org/10.1016/j.agsy.2018.12.002
5. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. Preprint retrieved from https://arxiv.org/abs/2004.10934