UAV, a Farm Map, and Machine Learning Technology Convergence Classification Method of a Corn Cultivation Area

Author:

Lee Dong-HoORCID,Kim Hyeon-Jin,Park Jong-HwaORCID

Abstract

South Korea’s agriculture is characterized by a mixture of various cultivated crops. In such an agricultural environment, convergence technology for ICT (information, communications, and technology) and AI (artificial intelligence) as well as agriculture is required to classify objects and predict yields. In general, the classification of paddy fields and field boundaries takes a lot of time and effort. The Farm Map was developed to clearly demarcate and classify the boundaries of paddy fields and fields in Korea. Therefore, this study tried to minimize the time and effort required to divide paddy fields and fields through the application of the Farm Map. To improve the fact that UAV image processing for a wide area requires a lot of time and effort to classify objects, we suggest a method for optimizing cultivated crop recognition. This study aimed to evaluate the applicability and effectiveness of machine learning classification techniques using a Farm Map in object-based mapping of agricultural land using unmanned aerial vehicles (UAVs). In this study, the advanced function selection method for object classification is to improve classification accuracy by using two types of classifiers, support vector machine (SVM) and random forest (RF). As a result of classification by applying a Farm Map-based SVM algorithm to wide-area UAV images, producer’s accuracy (PA) was 81.68%, user’s accuracy (UA) was 75.09%, the Kappa coefficient was 0.77, and the F-measure was 0.78. The results of classification by the Farm Map-based RF algorithm were as follows: PA of 96.58%, UA of 92.27%, a Kappa coefficient of 0.94, and the F-measure of 0.94. In the cultivation environment in which various crops were mixed, the corn cultivation area was estimated to be 96.54 ha by SVM, showing an accuracy of 90.27%. RF provided an estimate of 98.77 ha and showed an accuracy of 92.36%, which was higher than that of SVM. As a result of using the Farm Map for the object-based classification method, the agricultural land classification showed a higher efficiency in terms of time than the existing object classification method. Most importantly, it was confirmed that the efficiency of data processing can be increased by minimizing the possibility of misclassification in the obtained results. The obtained results confirmed that rapid and reliable analysis is possible when the cultivated area of crops is identified using UAV images, a Farm Map, and machine learning.

Funder

the Rural Development Administration, Korea.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference66 articles.

1. Going Organic: Organic Vegetable Production: A Guide to Convert to Organic Production;Neeson,2007

2. Food Versus Fuel: An. Informed Introduction to Biofuels;Rosillo-Calle,2010

3. Introduction to Cellulosic Energy Crops

4. Changes and Prospects in the Development of Corn Varieties in Korea

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3