Artificial Intelligence in Agricultural Mapping: A Review

Author:

Espinel Ramón1,Herrera-Franco Gricelda2ORCID,Rivadeneira García José Luis3ORCID,Escandón-Panchana Paulo4ORCID

Affiliation:

1. Rural Research Center (CIR), ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil 090902, Ecuador

2. Faculty of Engineering Sciences, Universidad Estatal Península de Santa Elena UPSE, La Libertad 240204, Ecuador

3. Unidad de Investigación, Desarrollo e Innovación, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito 170518, Ecuador

4. Centre for Research and Projects Applied to Earth Sciences (CIPAT), Escuela Superior Politécnica del Litoral ESPOL, Guayaquil 09015863, Ecuador

Abstract

Artificial intelligence (AI) plays an essential role in agricultural mapping. It reduces costs and time and increases efficiency in agricultural management activities, which improves the food industry. Agricultural mapping is necessary for resource management and requires technologies for farming challenges. The mapping in agricultural AI applications gives efficiency in mapping and its subsequent use in decision-making. This study analyses AI’s current state in agricultural mapping through bibliometric indicators and a literature review to identify methods, agricultural resources, geomatic tools, mapping types, and their applications in agricultural management. The methodology begins with a bibliographic search in Scopus and the Web of Science (WoS). Subsequently, a bibliographic data analysis and literature review establish the scientific contribution, collaboration, AI methods, and trends. The United States (USA), Spain, and Italy are countries that produce and collaborate more in this area of knowledge. Of the studies, 76% use machine learning (ML) and 24% use deep learning (DL) for agricultural mapping applications. Prevailing algorithms such as Random Forest (RF), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs) correlate mapping activities in agricultural management. In addition, AI contributes to agricultural mapping in activities associated with production, disease detection, crop classification, rural planning, forest dynamics, and irrigation system improvements.

Funder

ESPOL university research project “Preparation of studies to formulate the irrigation and drainage plan of Galapagos”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3