Research on Maize Acreage Extraction and Growth Monitoring Based on a Machine Learning Algorithm and Multi-Source Remote Sensing Data

Author:

Luan Wenjie1ORCID,Shen Xiaojing1ORCID,Fu Yinghao23,Li Wangcheng145,Liu Qiaoling1,Wang Tuo1,Ma Dongxiang1

Affiliation:

1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China

2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

3. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China

4. State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Yinchuan 750021, China

5. Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan 750021, China

Abstract

Getting accurate and up-to-date information on the cultivated land area and spatial arrangement of maize, an important staple crop in the Ningxia Hui Autonomous Region, is very important for planning agricultural development in the region and judging crop yields. This work proposes a machine-learning methodology to extract corn from medium-resolution photos obtained from the Sentinel-2 satellite. The Google Earth Engine (GEE) cloud platform is utilized to facilitate the process. The identification of maize cultivation regions in Huinong District in the year 2021 was performed through the utilization of support vector machine (SVM) and random forest (RF) classification techniques. After obtaining the results, they were compared to see if using the random forest classification method to find planting areas for maize was possible and useful. Subsequently, the regions where maize was cultivated were combined with image data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which has a high temporal resolution. The Normalized Difference Vegetation Index (NDVI) contemporaneous difference method, which gives regular updates, was then used to track the growth of maize during its whole growth phase. The study’s results show that using the GEE cloud platform made it easier to quickly map out data about where to plant maize in Huinong District. Furthermore, the implementation of the random forest method resulted in enhanced accuracy in extracting maize planting areas. The confusion matrix’s evaluation of the classification performance produced an average overall accuracy of 98.9% and an average Kappa coefficient of 0.966. In comparison to the statistics yearbook of the Ningxia Hui Autonomous Region, the method employed in this study consistently yielded maize-planted area estimates in Huinong District with relative errors below 4% throughout the period spanning 2017 to 2021. The average relative error was found to be 2.04%. By combining MODIS image data with the NDVI difference model in the year 2021, the high-frequency monitoring of maize growth in Huinong District was successful. The growth of maize in Huinong District in 2021 exhibited comparable or improved performance in the seedling stage, nodulation stage, and the early stage of staminate pulling and spitting, possibly attributed to the impact of climate and other relevant elements. After that, the growth slowed down in August, and the percentage of regions with slower growth rates than in previous years gradually increased. However, overall, the growth of maize in Huinong District during the year 2021 showed improvement relative to the preceding years. The present study introduces a novel approach that demonstrates the capability to accurately extract corn crops in the Huinong District while simultaneously monitoring their growth at a high frequency.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3