Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity in Mushrooms

Author:

Aliaño-González María JoséORCID,Barea-Sepúlveda MartaORCID,Espada-Bellido EstrellaORCID,Ferreiro-González MartaORCID,López-Castillo José Gerardo,Palma MiguelORCID,Barbero Gerardo F.ORCID,Carrera CeferinoORCID

Abstract

The consumption of mushrooms has considerably increased in recent years because of their beneficial nutritional properties due to their essential amino acids, proteins, and dietary fiber content. Recent research has shown that they are also rich in polysaccharides and phenolic compounds. These compounds exhibit decisive free radical and ROS scavenging power with potential application to the treatment of neurodegenerative disorders. In addition, they present important properties like antioxidant, antiaging, and immune modulation. In the present research, the optimization for the extraction of total phenolic compounds and the antioxidant activity (DPPH and ABTS), based on ultrasound–assisted techniques has been carried out. Five variables (% MeOH in solvent, extraction temperature, amplitude, cycle, and sample:solvent ratio have been selected; both the total phenolic compounds content as well as the antioxidant activity (DPPH and ABTS)) have been considered as the response variables. The optimal conditions, determined by means of a multiresponse optimization method, were established at 0.2 g of sample extracted with 15.3 mL of solvent (93.6% MeOH) at 60 °C for 5 min and using 16.86% amplitude and 0.71 s−1 cycles. A precision study of the optimized method has been performed with deviations lower than 5%, which proves the repeatability and precision of the extraction method. Finally, the extraction method has been applied to wild and commercial mushrooms from Andalusia and Northern Morocco, which has confirmed its suitability for the extraction of the phenolic compounds from mushroom samples, while ensuring maximum antioxidant activity.

Funder

University of Cádiz

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3