Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality

Author:

Villa e Vila Vinícius1ORCID,Marques Patricia Angélica Alves1ORCID,Rezende Roberto2ORCID,Wenneck Gustavo Soares2ORCID,Terassi Daniele de Souza2ORCID,Andrean André Felipe Barion Alves2,Nocchi Raiana Crepaldi de Faria2,Matumoto-Pintro Paula Toshimi2

Affiliation:

1. Department of Biosystems Engineering, PPGESA/ESALQ, São Paulo University (USP), Piracicaba 13418-900, SP, Brazil

2. Department of Agronomy, State University of Maringa (UEM), Maringa 87020-900, PR, Brazil

Abstract

Deficit irrigation is applied to several agricultural crops as a water-saving irrigation strategy. The tomato plant is sensitive to water stress; however, integration with biostimulant applications, based on seaweed extracts, could be a strategy for plants adapting to this abiotic condition. The objective of this study was to evaluate agronomic and quality aspects of tomato cultivated under deficit irrigation combined with Ascophyllum nodosum extract (ANE) application. The experiment was conducted using a completely randomized design with two water replacement levels, 70 and 100% of crop evapotranspiration (ETc), and five doses of ANE (0, 0.1, 0.2, 0.3 and 0.4%) applied via soil drench. The interaction between ANE and ETc was significant (p < 0.05) in terms of plant growth, physiological parameters, fruit yield, yield components and fruit quality. Results indicated that when the tomato plant is under deficit irrigation, a higher ANE dose is required to achieve better development when compared to the 100% ETc condition, where the dose is lower. Under deficit irrigation, the largest fruit yield was obtained with 0.3 and 0.4% ANE, and with 100% ETc, the largest fruit yield was obtained with 0.2% ANE. ANE applications were also effective in increasing plant height, stem diameter, plant biomass, leaf area, chlorophyll and relative water content. In addition, tomato quality was also favored under deficit irrigation and seaweed extract application. We conclude that ANE applications attenuate water deficit effects in tomato plants and provide a strategy to ameliorate tomato yield, tomato quality and water use in agriculture.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3