The Effect of Biostimulants on Fruit Quality of Processing Tomato Grown under Deficit Irrigation

Author:

Liava Vasiliki1,Chaski Christina1,Añibarro-Ortega Mikel23ORCID,Pereira Alexis23ORCID,Pinela José23ORCID,Barros Lillian23ORCID,Petropoulos Spyridon A.1ORCID

Affiliation:

1. Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 Volos, Greece

2. Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

3. Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

Abstract

Water shortage can be a restrictive factor for the growth and quality of vegetable crops. Considering the alleviating effects of biostimulant application against water stress, this study aimed to investigate the effect of four biostimulant products (protein and amino acids with carboxylic acids (Tr1); protein and amino acids with seaweed extracts (Tr2); humic and fulvic acids with seaweed extracts (Tr3); SiO2 (Tr4); and control (no biostimulants added)) and two irrigation systems (regulated deficit irrigation (RDI)—65% of field capacity and regular irrigation (RI)—100% of field capacity) on quality parameters of processing tomato fruit. Regulated deficit irrigation and biostimulant application increased the energetic value, carbohydrates, and free sugars content, while organic acids showed a variable response to biostimulant use. In terms of tocopherols (α-, β-, γ-, δ-) and carotenoids (lycopene and β-carotene), regular irrigation and biostimulant application negatively affected their content, while Tr3 treatment had a beneficial impact on these lipophilic compounds under RDI conditions. The main fatty acids were palmitic (C16:0) and linoleic (C18:2n6) acids, which increased when plants were treated with Tr3 and Tr1 biostimulants under a deficit regime. Antioxidant activity (assessed by TBARS and OxHLIA assays) and total phenolic and flavonoids content also showed a variable response to the studied factors. In particular, the application of Tr3 and the control treatment under RDI increased the total phenolic content, while the control and Tr3 treatments under the same irrigation regime recorded the highest antioxidant activity. In conclusion, our results indicate that the adoption of eco-friendly strategies such as regulated deficit irrigation and biostimulant application can beneficially affect the quality traits of processing tomatoes.

Funder

European Regional Development Fund of the European Union

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3