Foliar Application of Biostimulant Mitigates Water Stress Effects on Soybean

Author:

Melo Gabriel Bressiane1,da Silva Alessandro Guerra1ORCID,da Costa Alan Carlos2,Alves da Silva Adnan2,Rosa Márcio1,Bessa Layara Alexandre3,Rodrigues Carlos Ribeiro4,Castoldi Gustavo4,Vitorino Luciana Cristina3ORCID

Affiliation:

1. Fazenda Fontes do Saber, Rio Verde Campus, Rio Verde University (UniRV), Caixa Postal 104, Rio Verde 75901-970, GO, Brazil

2. Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano, Rio Verde Campus, Rio Verde 75901-970, GO, Brazil

3. Laboratory of Agricultural Microbiology, Instituto Federal Goiano, Rio Verde Campus, Highway Sul Goiana, Km 01, Rio Verde 75901-970, GO, Brazil

4. Agricultural Chemistry Laboratory, Instituto Federal Goiano, Rio Verde Campus, Highway Sul Goiana, Km 01, Rio Verde 75901-970, GO, Brazil

Abstract

Climate change has emerged as a challenge for soybean cultivation around the world, stimulating the development of technological alternatives that aim to mitigate the damage caused by water deficit. From this perspective, algae extract-based biostimulants have been tested to reduce water stress in several crops, but little is known about their effects on soybean. Thus, we hypothesize that a commercial biostimulant based on Ascophyllum nodosum can improve the physiological performance and water relations of Glycine max plants subjected to water deficit. To test this hypothesis, we set up an experiment in controlled conditions in a greenhouse, considering five treatments (control; application of biostimulant; water deficit (WD); WD + application of biostimulant; and WD + split application of biostimulant). The experiment was designed in completely randomized blocks with four replications per treatment and conducted in polyethylene pots containing 10 L of soil and three plants per pot. The irrigation was carried out daily; the water deficit was 50% soil moisture at field capacity, starting at the R1 stage (beginning of flowering, where there is at least one flower open at any node on the plant) and maintained for ten days. The biostimulant was applied concurrently with the onset of water deficit. We confirmed the hypothesis that foliar application of 1.0 L ha−1 of the biostimulant reduces the deleterious effects of the common water deficit at the beginning of the reproductive stage of soybean through the reduction of damage from oxidative stress (reduction of malondialdehyde synthesis by 31.2% in relation to the WD plants), maintenance of water potential and cellular homeostasis (10.2% increase in relative water content when compared with WD plants), and conservation of the contents of chlorophyll in leaves and stimulation of photosynthesis and carboxylation (68% increase in net photosynthetic rate and 49.3% increase in carboxylation efficiency in relation to WD plants). However, when applied in installments, the biostimulant was not efficient in reducing soybean water stress. Therefore, we conclude that the application of a biostimulant based on A. nodosum can help reduce the harmful effects of water deficit on soybean plants, opening up perspectives for the mass use of this extract in agricultural crops produced on a large scale.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3