Adaptive Ultrasound-Based Tractor Localization for Semi-Autonomous Vineyard Operations

Author:

Corno MatteoORCID,Furioli SaraORCID,Cesana Paolo,Savaresi Sergio M.ORCID

Abstract

Autonomous driving is greatly impacting intensive and precise agriculture. Matter-of-factly, the first commercial applications of autonomous driving were in autonomous navigation of agricultural tractors in open fields. As the technology improves, the possibility of using autonomous or semi-autonomous tractors in orchards and vineyards is becoming commercially profitable. These scenarios offer more challenges as the vehicle needs to position itself with respect to a more cluttered environment. This paper presents an adaptive localization system for (semi-) autonomous navigation of agricultural tractors in vineyards that is based on ultrasonic automotive sensors. The system estimates the distance from the left vineyard row and the incidence angle. The paper shows that a single tuning of the localization algorithm does not provide robust performance in all vegetation scenarios. We solve this issue by implementing an Extended Kalman Filter (EKF) and by introducing an adaptive data selection stage that automatically adapts to the vegetation conditions and discards invalid measurements. An extensive experimental campaign validates the main features of the localization algorithm. In particular, we show that the Root Mean Square Error (RMSE) of the distance is 16 cm, while the angular RMSE is 2.6 degrees.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference21 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research and Experiment on Soybean Plant Identification Based on Laser Ranging Sensor;Agronomy;2023-11-01

2. Two Dimensional Local Positioning for Monitoring Position and Movement using UWB;2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE);2023-09-28

3. An extensive review on agricultural robots with a focus on their perception systems;Computers and Electronics in Agriculture;2023-09

4. An optimization based planner for autonomous navigation in vineyards;IFAC-PapersOnLine;2023

5. RESEARCH ON AGRICULTURAL VEHICLE SAFETY WARNING SYSTEM BASED ON LIDAR;INMATEH Agricultural Engineering;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3