RESEARCH ON AGRICULTURAL VEHICLE SAFETY WARNING SYSTEM BASED ON LIDAR

Author:

KONG Weiyu1,HU Guangrui2,ZHANG Shuo2,ZHOU Jianguo2,GAO Zening2,CHEN Jun2

Affiliation:

1. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China, AVIC Zhonghang Electronic Measuring Instruments Co.,ltd., Xi 'an 710119,China

2. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

Abstract

Intelligent agricultural vehicles have been widely used in the process of farming and harvesting in the field, which has brought great convenience to agricultural production. However, there are also safety issues such as accidental collision of agricultural vehicles or other agricultural machinery during operation. The use of sensing technology for the timely and accurate detection and pre-warning of obstacles during the operation of agricultural machinery is critically important for ensuring safety. In this paper, a two-dimensional lidar is used to detect obstacles in front of tractors with the Density-Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm and the Minimum Cost Maximum Flow algorithm(MCMF). A method to judge whether the obstacle is static or dynamic and a classification model of different security warning levels for obstacles in different states is proposed. Actual vehicle tests were conducted, with static obstacles tested repeatedly, and dynamic obstacles tested at different directions and speeds. The results showed that the overall average warning accuracy rate is 89.95%. Prediction results were robust for obstacles in different states, indicating that this system is able to ensure the safety of agricultural vehicles during their operation and promoted the development of agricultural mechanization.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3