Managing Tallgrass Prairies for Productivity and Ecological Function: A Long-Term Grazing Experiment in the Southern Great Plains, USA

Author:

Steiner ,Starks ,Neel ,Northup ,Turner ,Gowda ,Coleman ,Brown

Abstract

The Great Plains of the USA is one of largest expanses of prairie ecosystems in the world. Prairies have been extensively converted to other land uses. The remaining prairie ecosystems are important for livestock grazing and provide benefits including habitat for avian, terrestrial, and aquatic species, carbon regulation, and hydrologic function. While producers, land management agencies, and some researchers have promoted livestock management using rotational stocking for increased production efficiency and enhanced ecosystem function, scientific literature has not provided a consensus on whether rotational stocking results in increased plant biomass or animal productivity. To address this research need, we established long-term grazing research using an adaptive management framework to encompass a wide range of production and ecological interactions on native grassland pastures. This paper describes objectives, design, and implementation of the long-term study to evaluate productivity and ecological effects of beef cow–calf management and production under continuous system (CS) or rotational system (RS) on native tallgrass prairie. Findings from 2009 to 2015 indicate that plant biomass and animal productivity were similar in the two grazing management systems. There were some indicators that forage nutritive value of standing biomass and soil nutrient content were enhanced in the RS system compared with the CS, yet individual calf body weight (BW) at weaning was greater in the CS. This prepares us to engage with producers to help determine the focus for the next phase of the research.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference62 articles.

1. Major Uses of Land in the United States, 2012;Bigelow,2018

2. Enhancing soil and landscape quality in smallholder grazing systems;Steiner,2014

3. Are Grasslands under Threat? Brief Analysis of FAO Statistical Data on Pasture and Fodder Crops;Panunzi,2008

4. Review of Evidence on Drylands Pastoral Systems and Climate Change;Neely,2009

5. Impact of anthropogenic CO2 emissions on global human nutrition

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3