Dormant Season Vegetation Phenology and Eddy Fluxes in Native Tallgrass Prairies of the U.S. Southern Plains

Author:

Wagle PradeepORCID,Kakani Vijaya G.ORCID,Gowda Prasanna H.,Xiao XiangmingORCID,Northup Brian K.,Neel James P. S.,Starks Patrick J.,Steiner Jean L.,Gunter Stacey A.ORCID

Abstract

Carbon dioxide (CO2) fluxes and evapotranspiration (ET) during the non-growing season can contribute significantly to the annual carbon and water budgets of agroecosystems. Comparative studies of vegetation phenology and the dynamics of CO2 fluxes and ET during the dormant season of native tallgrass prairies from different landscape positions under the same climatic regime are scarce. Thus, this study compared the dynamics of satellite-derived vegetation phenology (as captured by the enhanced vegetation index (EVI) and the normalized difference vegetation index (NDVI)) and eddy covariance (EC)-measured CO2 fluxes and ET in six differently managed native tallgrass prairie pastures during dormant seasons (November through March). During December–February, vegetation phenology (EVI and NDVI) and the dynamics of eddy fluxes were comparable across all pastures in most years. Large discrepancies in fluxes were observed during March (the time of the initiation of growth of dominant warm-season grasses) across years and pastures due to the influence of weather conditions and management practices. The results illustrated the interactive effects between prescribed spring burns and rainfall on vegetation phenology (i.e., positive and negative impacts of prescribed spring burns under non-drought and drought conditions, respectively). The EVI better tracked the phenology of tallgrass prairie during the dormant season than did NDVI. Similar EVI and NDVI values for the periods when flux magnitudes were different among pastures and years, most likely due to the satellite sensors’ inability to fully observe the presence of some cool-season C3 species under residues, necessitated a multi-level validation approach of using ground-truth observations of species composition, EC measurements, PhenoCam (digital) images, and finer-resolution satellite data to further validate the vegetation phenology derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) during dormant seasons. This study provides novel insights into the dynamics of vegetation phenology, CO2 fluxes, and ET of tallgrass prairie during the dormant season in the U.S. Southern Great Plains.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3