Affiliation:
1. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475000, China
2. College of Geography and Environmental Science, Henan University, Kaifeng 475001, China
3. Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
4. Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Abstract
Deciduous broadleaf forests (DBF) are an extremely widespread vegetation type in the global ecosystem and an indicator of global environmental change; thus, they require accurate phenological monitoring. However, there is still a lack of systematic understanding of the sensitivity of phenological retrievals for DBF in terms of different spatial resolution data and proxy indices. In this study, 79 globally distributed DBF PhenoCam Network sites (total 314 site-years, 2013–2018) were used as the reference data (based on green chromaticity coordinates, GCC). Different spatial resolutions (30 m Landsat and Sentinel-2 data, and 500 m MCD43A4 data) and satellite remote sensing vegetation indices (normalized difference vegetation index, NDVI; enhanced vegetation index, EVI; and near-infrared reflectance of vegetation, NIRV) were compared to find the most suitable data and indices for DBF phenological retrievals. The results showed that: (1) for different spatial resolutions, both 30 m Landsat–Sentinel-2 data and 500 m MODIS data accurately captured (R2 > 0.8) DBF phenological metrics (i.e., the start of the growing season, SOS, and the end of the growing season, EOS), which are associated with the comparatively homogeneous landscape pattern of DBF; (2) for SOS, the NIRv index was closer to GCC than EVI and NDVI, and it showed a slight advantage over EVI and a significant advantage over NDVI. However, for EOS, NDVI performed best, outperforming EVI and NIRv; and (3) for different phenological metrics, the 30 m data showed a significant advantage for detecting SOS relative to the 500 m data, while the 500 m MCD43A4 outperformed the 30 m data for EOS. This was because of the differences between the wavebands used for GCC and for the satellite remote sensing vegetation indices calculations, as well as the different sensitivity of spatial resolution data to bare soil. This study provides a reference for preferred data and indices for broad scale accurate monitoring of DBF phenology.
Funder
National Key Research and Development Program of China
Natural Science Foundation of China
Strategic Priority Research Program
National Natural Science Foundation of China
Outstanding Youth Foundation of Henan Natural Science Foundation
CAS Youth Interdisciplinary Team Project
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献