Tree Trunk and Obstacle Detection in Apple Orchard Based on Improved YOLOv5s Model

Author:

Su Fei,Zhao Yanping,Shi Yanxia,Zhao Dong,Wang Guanghui,Yan YinfaORCID,Zu LinluORCID,Chang SiyuanORCID

Abstract

In this paper, we propose a tree trunk and obstacle detection method in a semistructured apple orchard environment based on improved YOLOv5s, with an aim to improve the real-time detection performance. The improvement includes using the K-means clustering algorithm to calculate anchor frame and adding the Squeeze-and-Excitation module and 10% pruning operation to ensure both detection accuracy and speed. Images of apple orchards in different seasons and under different light conditions are collected to better simulate the actual operating environment. The Gradient-weighted Class Activation Map technology is used to visualize the performance of YOLOv5s network with and without improvement to increase interpretability of improved network on detection accuracy. The detected tree trunk can then be used to calculate the traveling route of an orchard carrier platform, where the centroid coordinates of the identified trunk anchor are fitted by the least square method to obtain the endpoint of the next time traveling rout. The mean average precision values of the proposed model in spring, summer, autumn, and winter were 95.61%, 98.37%, 96.53%, and 89.61%, respectively. The model size of the improved model is reduced by 13.6 MB, and the accuracy and average accuracy on the test set are increased by 5.60% and 1.30%, respectively. The average detection time is 33 ms, which meets the requirements of real-time detection of an orchard carrier platform.

Funder

The Tianjin Science and Technology Planning Project in 2020

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3