Developing Machine Vision in Tree-Fruit Applications—Fruit Count, Fruit Size and Branch Avoidance in Automated Harvesting

Author:

Neupane Chiranjivi1ORCID,Walsh Kerry B.1ORCID,Goulart Rafael1ORCID,Koirala Anand1ORCID

Affiliation:

1. Institute for Future Farming Systems, Central Queensland University, Rockhampton 4701, Australia

Abstract

Recent developments in affordable depth imaging hardware and the use of 2D Convolutional Neural Networks (CNN) in object detection and segmentation have accelerated the adoption of machine vision in a range of applications, with mainstream models often out-performing previous application-specific architectures. The need for the release of training and test datasets with any work reporting model development is emphasized to enable the re-evaluation of published work. An additional reporting need is the documentation of the performance of the re-training of a given model, quantifying the impact of stochastic processes in training. Three mango orchard applications were considered: the (i) fruit count, (ii) fruit size and (iii) branch avoidance in automated harvesting. All training and test datasets used in this work are available publicly. The mAP ‘coefficient of variation’ (Standard Deviation, SD, divided by mean of predictions using models of repeated trainings × 100) was approximately 0.2% for the fruit detection model and 1 and 2% for the fruit and branch segmentation models, respectively. A YOLOv8m model achieved a mAP50 of 99.3%, outperforming the previous benchmark, the purpose-designed ‘MangoYOLO’, for the application of the real-time detection of mango fruit on images of tree canopies using an edge computing device as a viable use case. YOLOv8 and v9 models outperformed the benchmark MaskR-CNN model in terms of their accuracy and inference time, achieving up to a 98.8% mAP50 on fruit predictions and 66.2% on branches in a leafy canopy. For fruit sizing, the accuracy of YOLOv8m-seg was like that achieved using Mask R-CNN, but the inference time was much shorter, again an enabler for the field adoption of this technology. A branch avoidance algorithm was proposed, where the implementation of this algorithm in real-time on an edge computing device was enabled by the short inference time of a YOLOv8-seg model for branches and fruit. This capability contributes to the development of automated fruit harvesting.

Funder

CQU Elevate living allowance scholarship

AusIndustry AC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3