Climate Change and Its Impact on Crops: A Comprehensive Investigation for Sustainable Agriculture

Author:

Kumari AradhnaORCID,Lakshmi Geetha AjayORCID,Krishna Gopinathan KumarORCID,Patni Babita,Prakash Soban,Bhattacharyya Malini,Singh Santosh KumarORCID,Verma Krishan KumarORCID

Abstract

Plants are a highly advanced kingdom of living organisms on the earth. They survive under all climatic and weather variabilities, including low and high temperature, rainfall, radiation, less nutrients, and high salinity. Even though they are adapted to various environmental factors, which are variable, the performance of a crop will be compensated under sub/supra optimal conditions. Hence, current and future climate change factors pose a challenge to sustainable agriculture. Photosynthesis is the primary biochemical trait of crops that are affected by abiotic stress and elevated CO2 (eCO2). Under eCO2, the C3 legumes could perform better photosynthesis over C4 grasses. The associated elevated temperature promotes the survival of the C4 crop (maize) over C3 plants. In the American Ginseng, the elevated temperature promotes the accumulation of phytocompounds. Under less water availability, poor transpirational cooling, higher canopy temperatures, and oxidative stress will attenuate the stability of the membrane. Altering the membrane composition to safeguard fluidity is a major tolerance mechanism. For protection and survival under individual or multiple stresses, plants try to undergo high photorespiration and dark respiration, for instance, in wheat and peas. The redox status of plants should be maintained for ROS homeostasis and, thereby, plant survival. The production of antioxidants and secondary metabolites may keep a check on the content of oxidating molecules. Several adaptations, such as deeper rooting, epicuticular wax formation such as peas, and utilization of non-structural carbohydrates, i.e., wheat, help in survival. In addition to yield, quality is a major attribute abridged or augmented by climate change. The nutrient content of cereals, pulses, and vegetables is reduced by eCO2; in aniseed and Valeriana sp., the essential oil content is increased. Thus, climate change has perplexing effects in a species-dependent manner, posing hurdles in sustainable crop production. The review covers various scientific issues interlinked with challenges of food/nutritional security and the resilience of plants to climate variability. This article also glimpses through the research gaps present in the studies about the physiological effects of climate change on various crops.

Funder

Guangxi Key Laboratory of Sugarcane Genetic Improvement Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3