An Inverse Kinematics Solution for a Series-Parallel Hybrid Banana-Harvesting Robot Based on Deep Reinforcement Learning

Author:

Lin GuichaoORCID,Huang Peichen,Wang Minglong,Xu Yao,Zhang Rihong,Zhu LixueORCID

Abstract

A series-parallel hybrid banana-harvesting robot was previously developed to pick bananas, with inverse kinematics intractable to an address. This paper investigates a deep reinforcement learning-based inverse kinematics solution to guide the banana-harvesting robot toward a specified target. Because deep reinforcement learning algorithms always struggle to explore huge robot workspaces, a practical technique called automatic goal generation is first developed. This draws random targets from a dynamic uniform distribution with increasing randomness to facilitate deep reinforcement learning algorithms to explore the entire robot workspace. Then, automatic goal generation is applied to a state-of-the-art deep reinforcement learning algorithm, the twin-delayed deep deterministic policy gradient, to learn an effective inverse kinematics solution. Simulation experiments show that with automatic goal generation, the twin-delayed deep deterministic policy gradient solved the inverse kinematics problem with a success rate of 96.1% and an average running time of 23.8 milliseconds; without automatic goal generation, the success rate was just 81.2%. Field experiments show that the proposed method successfully guided the robot to approach all targets. These demonstrate that automatic goal generation enables deep reinforcement learning to effectively explore the robot workspace and to learn a robust and efficient inverse kinematics policy, which can, therefore, be applied to the developed series-parallel hybrid banana-harvesting robot.

Funder

Laboratory of Lingnan Modern Agriculture Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3