Greenhouse Robots: Ultimate Solutions to Improve Automation in Protected Cropping Systems—A Review

Author:

Bagagiolo GiorgiaORCID,Matranga GiovanniORCID,Cavallo EugenioORCID,Pampuro NiccolòORCID

Abstract

In recent years, agricultural robotics has received great attention in research studies, being considered a way to address some important issues of the agricultural sector, such as precision agriculture, resources saving, improvement of safety conditions, and shortage of human labor. These issues are particularly relevant in greenhouse production systems, where many highly repetitive and sometimes dangerous operations are still required to be performed by humans. The purpose of the present review is providing an overview of the research conducted in recent years related to robotic automation for greenhouse applications. The currently available literature about robots and automated solutions for greenhouse applications has been reviewed through the consultation of international databases of journals. A total of 38 publications were included after screening and the information related to each retrieved automated solution was classified. The research highlighted great variability among studies, which often describe automation solutions designed for specific crops and define the specific “supporting tasks” necessary for the completion of a “main task”. Specifically, the technologies used for guidance and navigation systems, crop detection and fruit grasping system, spraying system, and other minor supporting tasks have been described. Furthermore, a critical appraisal of the main challenges of the sector and future research directions are provided.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3