A Prediction Hybrid Framework for Air Quality Integrated with W-BiLSTM(PSO)-GRU and XGBoost Methods

Author:

Chang Wenbing1,Chen Xu1,He Zhao1,Zhou Shenghan1ORCID

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Abstract

Air quality issues are critical to daily life and public health. However, air quality data are characterized by complexity and nonlinearity due to multiple factors. Coupled with the exponentially growing data volume, this provides both opportunities and challenges for utilizing deep learning techniques to reveal complex relationships in massive knowledge from multiple sources for correct air quality prediction. This paper proposes a prediction hybrid framework for air quality integrated with W-BiLSTM(PSO)-GRU and XGBoost methods. Exploiting the potential of wavelet decomposition and PSO parameter optimization, the prediction accuracy, stability and robustness was improved. The results indicate that the R2 values of PM2.5, PM10, SO2, CO, NO2, and O3 predictions exceeded 0.94, and the MAE and RMSE values were lower than 0.02 and 0.03, respectively. By integrating the state-of-the-art XGBoost algorithm, meteorological data from neighboring monitoring stations were taken into account to predict air quality trends, resulting in a wider range of forecasts. This strategic merger not only enhanced the prediction accuracy, but also effectively solved the problem of sudden interruption of monitoring. Rigorous analysis and careful experiments showed that the proposed method is effective and has high application value in air quality prediction, building a solid framework for informed decision-making and sustainable development policy formulation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Teaching Reform Project, Graduate Student Education and Development Foundation of Beihang University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3