Enhanced Air Quality Prediction Using a Coupled DVMD Informer-CNN-LSTM Model Optimized with Dung Beetle Algorithm

Author:

Wu Yang12,Qian Chonghui12,Huang Hengjun12

Affiliation:

1. School of Statistics and Data Science, Lanzhou University of Finance and Economics, Lanzhou 730020, China

2. Key Laboratory of Digital Economy and Social Computing Science of Gansu, Lanzhou 730020, China

Abstract

Accurate prediction of air quality is crucial for assessing the state of the atmospheric environment, especially considering the nonlinearity, volatility, and abrupt changes in air quality data. This paper introduces an air quality index (AQI) prediction model based on the Dung Beetle Algorithm (DBO) aimed at overcoming limitations in traditional prediction models, such as inadequate access to data features, challenges in parameter setting, and accuracy constraints. The proposed model optimizes the parameters of Variational Mode Decomposition (VMD) and integrates the Informer adaptive sequential prediction model with the Convolutional Neural Network-Long Short Term Memory (CNN-LSTM). Initially, the correlation coefficient method is utilized to identify key impact features from multivariate weather and meteorological data. Subsequently, penalty factors and the number of variational modes in the VMD are optimized using DBO. The optimized parameters are utilized to develop a variationally constrained model to decompose the air quality sequence. The data are categorized based on approximate entropy, and high-frequency data are fed into the Informer model, while low-frequency data are fed into the CNN-LSTM model. The predicted values of the subsystems are then combined and reconstructed to obtain the AQI prediction results. Evaluation using actual monitoring data from Beijing demonstrates that the proposed coupling prediction model of the air quality index in this paper is superior to other parameter optimization models. The Mean Absolute Error (MAE) decreases by 13.59%, the Root-Mean-Square Error (RMSE) decreases by 7.04%, and the R-square (R2) increases by 1.39%. This model surpasses 11 other models in terms of lower error rates and enhances prediction accuracy. Compared with the mainstream swarm intelligence optimization algorithm, DBO, as an optimization algorithm, demonstrates higher computational efficiency and is closer to the actual value. The proposed coupling model provides a new method for air quality index prediction.

Funder

Hengjun Huang

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3