Big-Data-Driven Machine Learning for Enhancing Spatiotemporal Air Pollution Pattern Analysis

Author:

Zareba Mateusz1ORCID,Dlugosz Hubert1,Danek Tomasz1ORCID,Weglinska Elzbieta1ORCID

Affiliation:

1. Department of Geoinformatics and Applied Computer Science, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland

Abstract

Air pollution is an important problem for public health. The spatiotemporal analysis is a crucial step for understanding the complex characteristics of air pollution. Using many sensors and high-resolution time-step observations makes this task a big data challenge. In this study, unsupervised machine learning algorithms were applied to analyze spatiotemporal patterns of air pollution. The analysis was conducted using PM10 big data collected from almost 100 sensors located in Krakow, over a period of one year, with data being recorded at 1-h intervals. The analysis results using K-means and SKATER clustering revealed distinct differences between average and maximum values of pollutant concentrations. The study found that the K-means algorithm with Dynamic Time Warping (DTW) was more accurate in identifying yearly patterns and clustering in rapidly and spatially varying data, compared to the SKATER algorithm. Moreover, the clustering analysis of data after kriging greatly facilitated the interpretation of the results. These findings highlight the potential of machine learning techniques and big data analysis for identifying hot-spots, cold-spots, and patterns of air pollution and informing policy decisions related to urban planning, traffic management, and public health interventions.

Funder

AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3