Machine Learning Techniques for Spatio-Temporal Air Pollution Prediction to Drive Sustainable Urban Development in the Era of Energy and Data Transformation

Author:

Zareba Mateusz1ORCID,Cogiel Szymon1ORCID,Danek Tomasz1ORCID,Weglinska Elzbieta1ORCID

Affiliation:

1. Department of Geoinformatics and Applied Computer Science, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059 Krakow, Poland

Abstract

Sustainable urban development in the era of energy and digital transformation is crucial from a societal perspective. Utilizing modern techniques for analyzing large datasets, including machine learning and artificial intelligence, enables a deeper understanding of historical data and the efficient prediction of future events based on data from IoT sensors. This study conducted a multidimensional historical analysis of air pollution to investigate the impacts of energy transformation and environmental policy and to determine the long-term environmental implications of certain actions. Additionally, machine learning (ML) techniques were employed for air pollution prediction, taking spatial factors into account. By utilizing multiple low-cost air sensors categorized as IoT devices, this study incorporated data from various locations and assessed the influence of neighboring sensors on predictions. Different ML approaches were analyzed, including regression models, deep neural networks, and ensemble learning. The possibility of implementing such predictions in publicly accessible IT mobile systems was explored. The research was conducted in Krakow, Poland, a UNESCO-listed city that has had long struggle with air pollution. Krakow is also at the forefront of implementing policies to prohibit the use of solid fuels for heating and establishing clean transport zones. The research showed that population growth within the city does not have a negative impact on PMx concentrations, and transitioning from coal-based to sustainable energy sources emerges as the primary factor in improving air quality, especially for PMx, while the impact of transportation remains less relevant. The best results for predicting rare smog events can be achieved using linear ML models. Implementing actions based on this research can significantly contribute to building a smart city that takes into account the impact of air pollution on quality of life.

Funder

AGH University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3