Use of Mamdani Fuzzy Algorithm for Multi-Hazard Susceptibility Assessment in a Developing Urban Settlement (Mamak, Ankara, Turkey)

Author:

Yanar Tugce,Kocaman SultanORCID,Gokceoglu CandanORCID

Abstract

Urban areas may be affected by multiple hazards, and integrated hazard susceptibility maps are needed for suitable site selection and planning. Furthermore, geological–geotechnical parameters, construction costs, and the spatial distribution of existing infrastructure should be taken into account for this purpose. Up-to-date land-use and land-cover (LULC) maps, as well as natural hazard susceptibility maps, can be frequently obtained from high-resolution satellite sensors. In this study, an integrated hazard susceptibility assessment was performed for a developing urban settlement (Mamak District of Ankara City, Turkey) considering landslide and flood potential. The flood susceptibility map of Ankara City was produced in a previous study using modified analytical hierarchical process (M-AHP) approach. The landslide susceptibility map was produced using the logistic regression technique in this study. Sentinel-2 images were employed for generating LULC data with the random forest classification method. Topographical derivatives obtained from a high-resolution digital elevation model and lithological parameters were employed for the production of landslide susceptibility maps. For the integrated hazard susceptibility assessment, the Mamdani fuzzy algorithm was considered, and the results are discussed in the present study. The results demonstrate that multi-hazard susceptibility assessment maps for urban planning can be obtained by combining a set of expert-based and ensemble learning methods.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3