Building Detection from SkySat Images with Transfer Learning: a Case Study over Ankara

Author:

Sawa KanakoORCID,Yalcin IlyasORCID,Kocaman SultanORCID

Abstract

AbstractThe detection and continuous updating of buildings in geodatabases has long been a major research area in geographic information science and is an important theme for national mapping agencies. Advancements in machine learning techniques, particularly state-of-the-art deep learning (DL) models, offer promising solutions for extracting and modeling building rooftops from images. However, tasks such as automatic labelling of learning data and the generalizability of models remain challenging. In this study, we assessed the sensor and geographic area adaptation capabilities of a pretrained DL model implemented in the ArcGIS environment using very-high-resolution (50 cm) SkySat imagery. The model was trained for digitizing building footprints via Mask R‑CNN with a ResNet50 backbone using aerial and satellite images from parts of the USA. Here, we utilized images from three different SkySat satellites with various acquisition dates and off-nadir angles and refined the pretrained model using small numbers of buildings as training data (5–53 buildings) over Ankara. We evaluated the buildings in areas with different characteristics, such as urban transformation, slums, regular, and obtained high accuracies with F‑1 scores of 0.92, 0.94, and 0.96 from SkySat 4, 7, and 17, respectively. The study findings showed that the DL model has high transfer learning capability for Ankara using only a few buildings and that the recent SkySat satellites demonstrate superior image quality.

Funder

Ministry of Education, Culture, Sports, Science and Technology

European Space Agency

Hacettepe University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3