Three-Source Partitioning of Methane Emissions from Paddy Soil: Linkage to Methanogenic Community Structure

Author:

Yuan Jing,Yi Xiaomei,Cao LinkuiORCID

Abstract

Identification of the carbon (C) sources of methane (CH4) and methanogenic community structures after organic fertilization may provide a better understanding of the mechanism that regulate CH4 emissions from paddy soils. Based on our previous field study, a pot experiment with isotopic 13C labelling was designed in this study. The objective was to investigate the main C sources for CH4 emissions and the key environmental factor with the application of organic fertilizer in paddies. Results indicated that 28.6%, 64.5%, 0.4%, and 6.5% of 13C was respectively distributed in CO2, the plants, soil, and CH4 at the rice tillering stage. In total, organically fertilized paddy soil emitted 3.51 kg·CH4 ha−1 vs. 2.00 kg·CH4 ha−1 for the no fertilizer treatment. Maximum CH4 fluxes from organically fertilized (0.46 mg·m−2·h−1) and non-fertilized (0.16 mg·m−2·h−1) soils occurred on day 30 (tillering stage). The total percentage of CH4 emissions derived from rice photosynthesis C was 49%, organic fertilizer C < 0.34%, and native soil C > 51%. Therefore, the increased CH4 emissions from paddy soil after organic fertilization were mainly derived from native soil and photosynthesis. The 16S rRNA sequencing showed Methanosarcina (64%) was the dominant methanogen in paddy soil. Organic fertilization increased the relative abundance of Methanosarcina, especially in rhizosphere. Additionally, Methanosarcina sp. 795 and Methanosarcina sp. 1H1 co-occurred with Methanobrevibacter sp. AbM23, Methanoculleus sp. 25XMc2, Methanosaeta sp. HA, and Methanobacterium sp. MB1. The increased CH4 fluxes and labile methanogenic community structure in organically fertilized rice soil were primarily due to the increased soil C, nitrogen, potassium, phosphate, and acetate. These results highlight the contributions of native soil- and photosynthesis-derived C in paddy soil CH4 emissions, and provide basis for more complex investigations of the pathways involved in ecosystem CH4 processes.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3