Nitrous oxide and methane fluxes from plasma-treated pig slurry applied to winter wheat

Author:

Lloyd I. L.ORCID,Grayson R. P.ORCID,Galdos M. V.ORCID,Morrison R.ORCID,Chapman P. J.ORCID

Abstract

AbstractThe use of livestock waste as an organic fertiliser releases significant greenhouse gas emissions, exacerbating climate change. Innovative fertiliser management practices, such as treating slurry with plasma induction, have the potential to reduce losses of carbon and nitrogen to the environment. The existing research on the effectiveness of plasma-treated slurry at reducing nitrous oxide (N2O) and methane (CH4) emissions, however, is not comprehensive, although must be understood if this technology is to be utilised on a large scale. A randomised block experiment was conducted to measure soil fluxes of N2O and CH4 from winter wheat every two hours over an 83-day period using automated chambers. Three treatments receiving a similar amount of plant-available N were used: (1) inorganic fertiliser (IF); (2) pig slurry combined with inorganic fertiliser (PS); (3) plasma-treated pig slurry combined with inorganic fertiliser (TPS). Cumulative N2O fluxes from TPS (1.14 g N m−2) were greater than those from PS (0.32 g N m−2) and IF (0.13 g N m−2). A diurnal pattern in N2O fluxes was observed towards the end of the experiment for all treatments, and was driven by increases in water-filled pore space and photosynthetically active radiation and decreases in air temperature. Cumulative CH4 fluxes from PS (3.2 g C m−2) were considerably greater than those from IF (− 1.4 g C m−2) and TPS (− 1.4 g C m−2). The greenhouse gas intensity of TPS (0.2 g CO2-eq kg grain−1) was over twice that of PS (0.07 g CO2-eq kg grain−1) and around six times that of IF (0.03 g CO2-eq kg grain−1). Although treating pig slurry with plasma induction considerably reduced CH4 fluxes from soil, it increased N2O emissions, resulting in higher non-CO2 emissions from this treatment. Life-cycle analysis will be required to evaluate whether the upstream manufacturing and transport emissions associated with inorganic fertiliser usage are outweighed by the emissions observed following the application of treated pig slurry to soil.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3