Synthetic Data Enhancement and Network Compression Technology of Monocular Depth Estimation for Real-Time Autonomous Driving System

Author:

Jun Woomin12,Yoo Jisang23,Lee Sungjin12ORCID

Affiliation:

1. Electronic Engineering, Dong Seoul University, Seongnam 13117, Republic of Korea

2. Autonomous Driving Lab, Modulabs, Seoul 06252, Republic of Korea

3. College of Electronics and Information, Kyung Hee University, 1732, Deogyeong-Daero, Giheung-gu, Yongin-si 17104, Republic of Korea

Abstract

Accurate 3D image recognition, critical for autonomous driving safety, is shifting from the LIDAR-based point cloud to camera-based depth estimation technologies driven by cost considerations and the point cloud’s limitations in detecting distant small objects. This research aims to enhance MDE (Monocular Depth Estimation) using a single camera, offering extreme cost-effectiveness in acquiring 3D environmental data. In particular, this paper focuses on novel data augmentation methods designed to enhance the accuracy of MDE. Our research addresses the challenge of limited MDE data quantities by proposing the use of synthetic-based augmentation techniques: Mask, Mask-Scale, and CutFlip. The implementation of these synthetic-based data augmentation strategies has demonstrably enhanced the accuracy of MDE models by 4.0% compared to the original dataset. Furthermore, this study introduces the RMS (Real-time Monocular Depth Estimation configuration considering Resolution, Efficiency, and Latency) algorithm, designed for the optimization of neural networks to augment the performance of contemporary monocular depth estimation technologies through a three-step process. Initially, it selects a model based on minimum latency and REL criteria, followed by refining the model’s accuracy using various data augmentation techniques and loss functions. Finally, the refined model is compressed using quantization and pruning techniques to minimize its size for efficient on-device real-time applications. Experimental results from implementing the RMS algorithm indicated that, within the required latency and size constraints, the IEBins model exhibited the most accurate REL (absolute RELative error) performance, achieving a 0.0480 REL. Furthermore, the data augmentation combination of the original dataset with Flip, Mask, and CutFlip, alongside the SigLoss loss function, displayed the best REL performance, with a score of 0.0461. The network compression technique using FP16 was analyzed as the most effective, reducing the model size by 83.4% compared to the original while maintaining the least impact on REL performance and latency. Finally, the performance of the RMS algorithm was validated on the on-device autonomous driving platform, NVIDIA Jetson AGX Orin, through which optimal deployment strategies were derived for various applications and scenarios requiring autonomous driving technologies.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference83 articles.

1. A survey of deep learning techniques for autonomous driving;Grigorescu;J. Field Robot.,2020

2. Deep learning in robotics: Survey on model structures and training strategies;Galambos;IEEE Trans. Syst. Man Cybern. Syst.,2021

3. Probabilistic Multimodal Depth Estimation Based on Camera-LiDAR Sensor Fusion;Monteiro;Mach. Vis. Appl. J.,2023

4. Zhang, J., and Ding, Y. (2024). OccFusion: Depth Estimation Free Multi-sensor Fusion for 3D Occupancy Prediction. arXiv.

5. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy;Xiao;Inf. Fusion,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3