Probabilistic multi-modal depth estimation based on camera–LiDAR sensor fusion

Author:

Obando-Ceron Johan S.ORCID,Romero-Cano VictorORCID,Monteiro SildomarORCID

Abstract

AbstractMulti-modal depth estimation is one of the key challenges for endowing autonomous machines with robust robotic perception capabilities. There have been outstanding advances in the development of uni-modal depth estimation techniques based on either monocular cameras, because of their rich resolution, or LiDAR sensors, due to the precise geometric data they provide. However, each of these suffers from some inherent drawbacks, such as high sensitivity to changes in illumination conditions in the case of cameras and limited resolution for the LiDARs. Sensor fusion can be used to combine the merits and compensate for the downsides of these two kinds of sensors. Nevertheless, current fusion methods work at a high level. They process the sensor data streams independently and combine the high-level estimates obtained for each sensor. In this paper, we tackle the problem at a low level, fusing the raw sensor streams, thus obtaining depth estimates which are both dense and precise, and can be used as a unified multi-modal data source for higher-level estimation problems. This work proposes a conditional random field model with multiple geometry and appearance potentials. It seamlessly represents the problem of estimating dense depth maps from camera and LiDAR data. The model can be optimized efficiently using the conjugate gradient squared algorithm. The proposed method was evaluated and compared with the state of the art using the commonly used KITTI benchmark dataset.

Funder

Universidad Autónoma de Occidente, Cali, Colombia

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3